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Abstract 
This study presented and analyzed the fractional order model for co-infection 
of Streptococcus pneumoniae and COVID-19 by adopting the Atangana-Ba-
leanu derivative in Caputo sense. The solution’s boundedness and non-nega-
tivity are derived by applying the Laplace transform of the Atangana-Baleanu 
derivative in Caputo sense. We established the existence and uniqueness of the 
solutions of the proposed model using Atangana-Baleanu Caputo Integral, and 
Banach fixed point theorem. The disease-free equilibrium and basic reproduc-
tion number of the model were obtained. The stability of the model was inves-
tigated by applying Ulam-Hyers-Rassias stability. The deduced and presented 
fractional model is fitted to Nigeria’s confirmed daily COVID-19 cases as at 
February 2024. The numerical solution of the system is derived through the 
Adams-Bashforth linear multi-step method. The simulation of the overall pa-
tients co-infected with COVID-19 and Streptococcus pneumoniae, at different 
fractional orders was carried out. 
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1. Background 

COVID-19 pandemic has spread across over 150 countries, and led to headlines 
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in the world in the year 2020. The COVID-19 is a contagious disease caused by 
the virus SARS-CoV-2. Many people thought the virus was first identified in De-
cember 2019 in the city of Wuhan, Hubei province, China. It was initially referred 
to as the “2019-n-CoV”, the virus was later officially named SARS-CoV-2. The 
COVID-19 disease is an infectious disease caused by the SARS-CoV-2 virus. It is 
primarily transmitted from an infected to a healthy individual through droplets 
of saliva or discharge from the nose, eyes, and mouth when an infected person 
coughs or sneezes [1]. 

Available data recorded over 775.6 million infection cases, with over 7 million 
deaths, and 675.6 million recoveries across the globe [2] [3]. Also, over 13.59 bil-
lion doses of the COVID-19 vaccine have been administered, with above 69.4% 
(5.5 billion individuals) of the world population vaccinated (received at least one 
dose of a COVID-19 vaccine) [1]. Similarly, the record also shows that Nigeria has 
confirmed 267,188 COVID-19 cases, discharged 259,953, and has recorded 3155 
deaths, with 4080 active cases, with 17,371 total cases per one million populations, 
and 374 total deaths per one million populations across the 36 states, and has ad-
ministered over 133.05 million doses of the several COVID-19 vaccine with 39% 
of her citizens fully vaccinated, and 46% received at least one dose of the vaccine 
as at February 2024 [1]-[3]. 

On the other hand, Streptococcus pneumoniae (S. pneumoniae), also known as 
pneumococcus, is a Gram-positive bacterium that commonly colonizes the hu-
man upper respiratory tract. While it is typically asymptomatic, it is also a leading 
cause of various respiratory and invasive infections, particularly in young chil-
dren, the elderly, and immunocompromised individuals. Characterizing the mech-
anisms of pathogenesis, S. pneumoniae utilizes a variety of virulence factors to 
establish and maintain infections, including adhesins, pneumolysin, and various 
enzymes that contribute to host tissue damage and immune evasion. Pneumococ-
cal infections are typically initiated by the colonization of the upper respiratory 
tract, followed by invasion and dissemination to other sites of the body, such as 
the lungs, bloodstream, and central nervous system [4]. Over the past thirty years, 
pneumonia has consistently been the primary factor contributing to the death of 
children worldwide, resulting in the loss of 671,928 lives among those under the 
age of five in 2019. Nigeria has the highest number of deaths, with 129,444 chil-
dren under five dying from pneumonia in 2019 at a death rate of 386.15 per 
100,000 [5]. Streptococcus pneumoniae is primarily transmitted through respira-
tory droplets produced when an infected person coughs or sneezes. The transmis-
sion can occur through direct contact with respiratory secretions from an infected 
individual or indirectly by touching surfaces contaminated with these secretions 
and then touching the face, particularly the mouth or nose [6]. Streptococcus 
pneumoniae has been detected in at least 63% of severe COVID-19 cases, and has 
been confirmed to be the common cause of complications, severe illness, and 
death of COVID-19 patients across the globe. Many studies have shown that co-
infected patients have a higher risk of severe illness and death compared to those 
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who only had COVID-19. The co-infection dynamics between COVID-19 and 
Streptococcus pneumoniae pose significant challenges to public health systems 
worldwide. Therefore, there is need to develop a mathematical model that will 
proffer an effective solution which will drastically reduce or eliminate the burden 
on he global population by the COVID-19 and its co-infections with other dis-
eases at various stages. Hence the challenge of developing a fractional order model 
for co-infection of streptococcus pneumoniae and COVID-19 with saturated inci-
dence force of infection. 

Several mathematical model research have been conducted for COVID-19, and 
the co-infection of COVID-19 with other diseases. For instance, Omame in his frac-
tional order model for the co-interaction of COVID-19 and Hepatitis B virus, fitted 
and estimated real data from Wuhan, China, and important parameters relating to 
each disease and their co-infection, and concluded that HBV and COVID-19 trans-
mission rates can greatly impact the dynamics of the co-infection of both diseases 
[7]. His research submitted that to control the co-circulation of both diseases in a 
population, efforts must be geared toward preventing incident infection with either 
or both diseases. Baleanu analyzed and presented a fractional-order model for 
COVID-19 transmission with the Caputo-Fabrizio derivative [8]. They used the ho-
motopy analysis transform method (HATM) to solve the model and also provided 
a solution in convergent series. Also, Omame in his fractional order model for dual 
variants of COVID-19 and HIV co-infection applied the Atangana-Baleanu deriv-
ative and concluded that the fractional derivatives had a great influence on the 
dynamics of the diseases across the epidemiological states over time which is as a 
result of the memory effect from the application of fractional derivative [9]. 

Aba in their study developed a mathematical model to depict the dynamics of 
COVID-19 with the consideration of quarantine, isolation, and environmental vi-
ral load [10]. The research showed that reducing the number of effective contacts 
with infected individuals leads to a substantial decline in the total number of in-
fected cases. The model also highlighted that reducing the environmental viral 
load significantly reduces the pandemic’s peak. Additionally, the study examined 
the effectiveness of quarantine or contact-tracing policies and hospitalization or 
self-isolation measures. The results demonstrated that contact tracing of exposed 
individuals is more effective in eliminating COVID-19 infections. 

Olumuyiwa in his research analyzed the fractional order of the pneumococcal 
pneumonia infection model using the Caputo Fabrizio operator [11]. He used 
fixed-point theory to prove the existence of a solution and computed the iterative 
solution by applying the fractional Adams-Bashforth method. In conclusion, he 
suggested that the dynamics of the disease were more apparent with the fractional 
order model than with the integer order model. Furthermore, Omame, Abbas, & 
Onyenegecha (2021) in their fractional-order model for COVID-19 and tubercu-
losis co-infection, applied Atangana-Baleauna derivative [12]. The study revealed 
that both the burden of COVID-19 and the co-infection of both diseases in the 
population will be reduced if the risk of COVID-19 infection by latently-infected 
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TB individuals is reduced. Aga, Keno, Terfasa, & Berhe (2024) in their study, pre-
sented a nonlinear deterministic mathematical model for co-infection of pneu-
monia and COVID-19 transmission dynamics and applied the optimal control 
theory to describe the optimal control model that incorporates four controls, 
namely, prevention of pneumonia, prevention of COVID-19, treatment of in-
fected pneumonia and treatment of infected COVID-19 and further concluded 
that the combination of several control variables is most effective in the reduction 
or elimination of the co-infection [13]. 

Research Objectives 

The objective of this study is to analyze the fractional order model for COVID-19 
and Streptococcus pneumoniae co-infection, using the Atangana-Baleanu frac-
tional order derivative in Caputo sense, establish the solution’s positivity and 
Boundedness of the model using Laplace transform of the Atangana-Baleanu, to 
establish the existence and uniqueness of the model solutions by applying the 
Atangana-Baleanu Caputo Integral, and the fixed-point theorem, to obtain the 
disease free equilibrium points and the basic reproductive number, and prove the 
Ulam-Hyers stability of the solutions. We also analyzed the numerical solution of 
the model. 

2. Method 

We focus particularly on the Atangana-Baleanu fractional derivatives and inte-
grals in Caputo Sense (ABC), which are characterized by their non-local and non-
singular properties. These derivatives provide a more accurate representation of 
our model compared to other common fractional derivatives. The ABC fractional 
derivatives not only facilitate easier computation but also allow for more compre-
hensive analysis within our framework. 

Definition 2.1 (Atangana and, Baleanu, 2016). Consider a function f belonging 
to the Sobolev space ( )1

1 2,H a a  with 2 1a a>  and a fractional order [ ]0,1ϑ∈ . 
The Atangana-Baleanu (AB) fractional derivative of ( )f t  of order ϑ +∈  is de-
fined as: 

 ( ) ( ) ( ) ( )
1 1

d
1 1

tabc
a t a

t
D f t f t E

ϑ
ϑ

ϑ

β ϑ
ϑ

ϑ ϑ

 −
= − 

− −  
∫


  (1) 

where ( )β ϑ  is a normalization function that satisfies ( ) ( )0 1 1β β= = , and 
( )Eϑ ⋅  denotes the Mittag-Leffler function, which generalizes the exponential func-

tion in the context of fractional calculus. 
Definition 2.2 (Atangana and, Baleanu, 2016) For the same function  

( )1
1 2,f H a a∈ , the Atangana-Baleanu (AB) fractional derivative of order ϑ +∈  

can also be represented as: 

 ( ) ( ) ( ) ( ) ( ) ( )( )
1 1

11 d
tabc

a t a
D f t f t t

f t
ϑϑ ϑ ϑ

β ϑ β ϑ ϑ
−−

= + −
Γ ∫    (2) 
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This alternative form highlights the dual nature of the AB fractional derivative, 
combining both a local term and a non-local integral term [14] [15]. 

Lemma 2.1 (Atangana and, Baleanu, 2016) For a function ( )1
1 2,f H a a∈ , 

the Newton-Leibniz formula for the AB fractional integral is given by: 

 ( )( ) ( ) ( )
1 11 1

abc abc
a a tI D f t f t f aϑ ϑ = −  (3) 

This lemma establishes a fundamental relationship between the fractional de-
rivative of AB and its corresponding integral. 

Theorem 2.1 (Atangana and, Baleanu, 2016) Consider a continuous function 
[ ],f C a b∈ . The AB fractional derivatives satisfy the inequality: 

 ( ) ( ) ( ) ( )
1 11 2 1 2

abc abc
a t a tD f t D f t f t f tϑ ϑ δ− < −  (4) 

where δ  is a positive constant. This theorem demonstrates the stability of the 
AB fractional derivatives under small perturbations of the function. 

Theorem 2.2 (Atangana and, Baleanu, 2016) The unique solution to the frac-
tional differential equation of order ϑ , 

 ( ) ( )
1

abc
a tD f t r tϑ =  

is given by: 

 ( ) ( ) ( ) ( ) ( ) ( )( )
1 1

11 d
tabc

a t a
D r t f t t

r t
ϑϑ ϑ ϑ

β ϑ β ϑ ϑ
−−

= + −
Γ ∫    (5) 

This theorem provides the explicit form of the AB fractional derivative for the 
given differential equation. 

Lemma 2.2. Let mω∈  be a differentiable vector function such that for all 
0t ≥ , 

 ( )T T* * * *
0 0
abc abc

t tD Q Q Dϑ ϑω ω ω ω ω ω ω ω       − − ≤ − −         (6) 

where m mQ ×∈  is a constant, symmetric, positive definite matrix. This lemma 
provides a condition for the fractional derivative of a quadratic form involving 
ω . 

3. Formulation of Model 
3.1. Assumptions of the Model 

The assumptions of the model are stated below: 
1) The population is homogeneously mixed (A population that interacts with 

one another to the same degree and fixed). 
2) Individuals infected with COVID-19 are susceptible to infection with Strep-

tococcus pneumoniae and vice versa. 
3) Co-infected individuals can transmit either COVID-19 or Streptococcus 

pneumoniae but not the mixed infections at the same time. 
4) Co-infected infected individuals can recover either from COVID-19 or Strep-

tococcus pneumoniae but not from the mixed infections at the same time. 
5) Rate of transmissibility for singly infected and co-infected individuals are 
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assumed same. 
6) We assume that the saturated incidence force of infection rate for both dis-

ease is 

 
1 2

   , coinfected diseases
1

i
i

i ij

i j
I I
β

π
α α

= =
+ +

 

7) People in the Vaccinated compartment can be infected for both diseases. 
8) That for both diseases, people can be infected only through contacts with 

infectious people. 
9) Recovered individuals from both diseases may go back to the susceptible 

class. 
The epidemiological states of the model at a given time is divided into ten com-

partments: unvaccinated susceptible humans ( )hS t , vaccinated individuals 
against COVID-19 ( )cV t , vaccinated individuals against S. pneumoniae ( )pV t , 
COVID-19 infected only individuals ( )cI t , isolated individuals with COVID-19 

( )cQ t , COVID-19 recovered individuals (non-S. pneumoniae infection) ( )cR t  S. 
pneumoniae infected (non-COVID-19 infection) ( )pI t , S. pneumoniae recovered 
individuals (non-COVID-19 infection) ( )pR t , Individuals with co-infections 

( )cpI t , Individuals with co-infections (hospitalized) ( )cpH t . 
Individuals are recruited into the population at the rate, hΘ . Susceptible hu-

mans ( )S t , acquire COVID-19 disease at the rate  
( )( )

( )( )
1 2

1
1

1
c c cp

c c cp
c cp

I I
I I

I I

β ηρ
π ηρ

α α

− +
= − +

+ +
 where, 

1 21
c

c
c cpI I
β

π
α α

=
+ +

  

denotes the saturated incidence force of S. pneumoniae infection. Also is the face-
mask compliance rate and denotes the efficacy of the face-mask for both diseases. 

Furthermore, it is assumed that natural mortality is the same and occurs across 
all the model compartment, at the rate µ . COVID-19 Vaccinated susceptible, 

( )cV t , acquire COVID-19 at a reduced rate  
( )( )( )

( )( )( )
1 2

1 1
1 1

1
c c c cp

c c c cp
c cp

I I
I I

I I

β χ ηρ
π χ ηρ

α α

− − +
= − − +

+ +
, where cχ  is the  

COVID-19 vaccine efficacy. 
While, S. pneumoniae vaccinated susceptible ( )pV t , acquires S. pneumoniae 

at a reduced rate of 
( )( )( ) ( )( )( )

1 2

1 1
= 1 1

1
p p p cp

p p p cp
p cp

I I
I I

I I

β χ ηρ
π χ ηρ

α α

− − +
− − +

+ +
, 

where pχ  is the S. pneumoniae vaccine efficacy. 

Also, we have assumed that the transmissibility rate for singly infected and co-
infected persons is the same, as there is no evidence yet to justify otherwise. All 
other transitions of the model that are given could be found in the model Equation 
(1). As all the model parameters are well defined in Table 1 below. 

3.2. Symbols and Parameters of the Model 

Below in Table 1 are the symbols and parameters of the proposed model. 

https://doi.org/10.4236/oalib.1112569


C. Z. Opara et al. 
 

 

DOI: 10.4236/oalib.1112569 7 Open Access Library Journal 
 

Table 1. Description of the model variables and parameters. 

Variable Description 

hS  Unvaccinated susceptible humans 

( )cI t  Individuals infected with COVID-19 only 

( )cV t  Vaccinated individuals against COVID-19 

cQ  Isolated individuals with COVID-19 

cR  COVID-19 recovered individuals 

pI  Individuals infected with S. pneumoniae only 

pV  Individuals vaccinated against pneumonia 

pR  S. pneumoniae recovered individuals 

cpI  Individuals with co-infection 

cpH  Individuals with co-infection (hospitalized) 

Parameter Description 

cβ  COVID-19 transmission rate 

pβ  pneumonia transmission rate 

η  Face-mask compliance 

ϑ  Face-mask efficacy 

Θ  Recruitment rate into susceptible compartment 

vcω  COVID-19 vaccination rate 

cχ  COVID-19 vaccine efficacy 

cγ  Recovery rate of COVID-19 infected individuals (natural recovery) 

cθ  Per capita rate of COVID recovered individuals going back to the susceptible class 

vpω  S. pneumoniae average vaccination rate 

pχ  S. pneumoniae vaccine efficacy 

pγ  Recovery rate of S. pneumoniae infected individuals 

pθ  Per capita rate of pneumonia recovered individuals going back to the susceptible class 

µ  Natural death rate 

1ν  Rate for individuals in isolation compartment cQ  

2ν  Rate for individuals in hospitalization compartment cpH  class 

1ρ , 1ω  COVID-19 treatment rate for individuals in cI  and cQ  respectively 

2ρ , 2ω  COVID-19 treatment rate for individuals in cpI  and cpH  respectively 

1σ  COVID-19 related death rate 

2σ  S. pneumoniae-related death rate 
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Continued 

cκ  Modification parameter accounting for increased susceptibility to COVID-19 infection 

pκ  Modification parameter accounting for increased susceptibility to S. pneumoniae infection 

1 2 ,1
i

i i jI I
βπ

α α
=

+ +
 

Saturated incidence force of infection; _1 and _2 are the saturation factor that measures the inhibitory effect 
of COVID-19 and S. pneumoniae respectively 

cdγ  COVID-19 recovery rate for cpI  and cpH  

pdγ  pneumonia recovery rate for cpI  and cpH  classes respectively 

 
The total population at time t is given by 

 h c c c c p p p cp cp cpN S V I Q R V I R I H R= + + + + + + + + + +  

3.3. Flow Diagram of the Model 

 
Figure 1. Model flow diagram. 

 
Applying the symbols and parameters in Table 1, assumptions, and the model 

flow diagram in Figure 1, we now formulate the model equations. The model em-
ploys fractional calculus, specifically the Atangana-Baleanu (AB) fractional deriv-
atives in Caputo sense, which offer a more comprehensive framework for captur-
ing the memory and hereditary properties of biological processes. This approach 
allows us to better simulate the complex interactions and delayed effects inherent 

https://doi.org/10.4236/oalib.1112569


C. Z. Opara et al. 
 

 

DOI: 10.4236/oalib.1112569 9 Open Access Library Journal 
 

in the spread and progression of infectious diseases. The model is given thus: 

( )( ) ( )( )

( )( )( ) ( )( )
( )( ) ( ) ( )( )( )

( )( )

0

0

0

1

1 1

1 1 1

1 1 1

1

abc
t h h vp vc c c cp p p cp h

c c p p

abc
t c vc h h c c c cp c p p cp c

abc
t c c c cp h p c c c cp c

p p p cp h c

D S I I I I S

R R

D V S I I V I I V

D I I I S V I I V

I I

ϑ

ϑ

ϑ

µ ω ω π ηρ π ηρ

θ θ

ω µ π χ ηρ π ηρ

π ηρ π χ ηρ

κ π ηρ µ σ γ ρ

 = Θ− + + + − + + − + 
+ +

 = − + − − + − − + 
   = − + + + − − +   

− − + + + + +

[ ]
[ ] [ ] ( )

( )( )( ) ( )( )
( )( ) ( ) ( )( )( )

1 1

0 1 1 1

0 1 1

0

0

1 1 1

1 1 1

c pd cp pd cp

abc
t c c c h c

abc
t c c c c c h c c

abc
t p vp h h p p p cp p c c cp p

abc
t p p p cp h c p p p cp p

c c

v I I H

D Q v I Q

D R I Q R

D V S I I V I I V

D I I I S V I I V

ϑ

ϑ

ϑ

ϑ

γ γ

γ ω µ σ

γ ρ γ ω µ θ

ω µ π χ ηρ π ηρ

π ηρ π χ ηρ

π κ

 + + + 
= − + + +

= + + + − +

 = − + − − + − − + 
   = − + + + − − +   

− ( )( ) ( )

( )
( )( ) ( )( )

( )
( )

2 2 2

0

0

1 2 2 2

0 2 1 2 2

1

1 1

c cp h p p cd cp cp

abc
t p p p h p p

abc
t cp p p p cp c c c c cp p

h cd pd cp

abc
t cp cp h pd cp

I I I I H

D R I R

D I I I I I I I

v I

D H v I H

ϑ

ϑ

ϑ

ηρ µ σ γ γ ρ ω

γ µ θ

π κ ηρ π κ ηρ

µ σ σ γ γ ρ

µ σ σ ω γ

 − + + + + + + + 

= − +

= − + + − +

− + + + + + +

= − + + + + (7) 

with corresponding initial conditions 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 0 0 0 0 0

0 0 0 0 0

0 , 0 , 0 , 0 , 0 , 0

0 , 0 , 0 , 0 , 0
h h c c c c c c c c p p

p p p p cp cp cp cp cp cp

S S V V I I Q Q R R V V

I I R R I I H H R R

= = = = = =

= = = = =
 

4. Analysis of the Model 
4.1. Boundedness of the Solution 

The boundedness and non-negativity of the solutions which shows that the system 
(7) is both mathematically and biologically well posed is presented 

 ( )H c c c c p p p cp cp
h

S V I Q R V I R I H
µ

 Θ
= + + + + + + + + + ≤ 
 

  

Proof. Adding all the equations of the system 7 gives 

 ( ) ( ) ( )( )1 1 2 1 2 1 2
d
d

h
h h c c p cp cp

N
N t I Q I I H

t
µ σ σ σ σ σ σ σ= Θ− − + + + + + +  (8) 

From the inequality given in Equation (8), 

 ( ) d
2 ,

d
h

h h h h
N

N N
t

µ δ µΘ− + ≤ ≤ Θ−  (9) 

where { }1 2min ,δ σ σ= , we proceed by applying the Laplace transform. 
Applying the Laplace transform to each term in the inequality, we have: 

 ( ){ } { }d
2 .

d
h

h h h h
N

N N
t

µ δ µ Θ− + ≤ ≤ Θ− 
 

    (10) 

Using the properties of the Laplace transform, we obtain 
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 ( ) ( ){ } ( ){ } ( ) ( ){ }2 0 .h h h h h hN t s N t N N t
s s

µ δ µΘ Θ
− + ≤ − ≤ −    (11) 

Reorganizing to isolate ( ){ }hN t , we get the bounds: 

 ( ){ }
( )0

,
h

h
h

N
sN t

s µ

Θ
+

≤
+

  

 ( ){ }
( )0

.
2

h

h
h

N
sN t
s µ δ

Θ
+

≥
+ +

  

Focusing on the upper bound and applying the inverse Laplace transform, we 
recognize that the solution involves the Mittag-Leffler function ( ),1E zϑ  and 

( ), 1E zϑ ϑ+ . Therefore, the upper bound solution is given by: 

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

,1

, 1

1
0

1 1

1

.
1

h h
h h

h

h

h

h h

N t N

E t

E t

ϑ
ϑ

ϑ
ϑ ϑ

ϑ ϑ
ϑ ϑ µ ϑ ϑ µ

ϑµ
ϑ ϑ µ

ϑµϑ
ϑ µ ϑ ϑ µ+

 − Θ
≤ +  + − + − 

 
+ −  + − 

 Θ
+ −  + − 


 



 

 (12) 

Given the asymptotic properties of the Mittag-Leffler function ( ),E zα β , as 
t →∞ , we have: 

 ( ) .h
h

N t
µ
Θ

≤  (13) 

Thus, the system described by Equation (7) is positively invariant, meaning the 
solutions remain bounded within a region   as t →∞ .□ 

4.2. Non-Negativity of the Solution 

Following the pattern in the work of (Ogunrinde et al. 2021), by contradiction we 
assume that equation two of the model is false. Then let  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 min : , , , , , , , , , 0c c c c p p p c p c pt t S h V t I t Q t R t V t I t R t I t H t= =
. Suppose ( )1 0cV t = , it implies that ( ) 0S t > , ( ) 0cI t > , ( ) 0cQ t > ,  

( ) 0cR t > , ( ) 0pV t > , ( ) 0cI t > , ( ) 0pR t > , ( ) 0cpI t > , ( ) 0cpH t > , for all 
[ ]10, t . We can assume that there exists the following expression, 

( )( )( ) ( )( ){ }1 0
min 1 1 1 .

t
vc h h c c c cp c p p cp ct t

S I I V I I Vθ ω µ π χ ηρ π ηρ
≤ ≤

 = − + − − + − − +   

It follows that 

 1 0.t c cD V Vθ− >  (14) 

We can also determine a continuous function 1Φ  to ascertain the following 
equation 

 ( )1 1 .t c cD V V tθ− = −Φ  

By Laplace transform, the above inequality becomes 
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 ( ) ( ) ( ) ( )1
1 10 ,c c cs V s s V V s sθ−− − = −Φ  

   

from which 

 

( ) ( ) ( )

( ) ( )

( ) ( )

1
1

1 1
1 1

11 1

1 1
11

0 0

0 ,

0
1 1

0 .

c c

c

k k

c k k
k k

ssV s V
s s

V s
s s s s

V s
s s

θ θ

θ θ

θ θ

−

− −

∞ ∞

+ +
= =

Φ
= −

− −

Φ   = − − −   
   

= −Φ∑ ∑





 

  

  

 (15) 

Ignoring the non-positive term, the inverse Laplace transform gives the solution 
of (14) (using Mittag-Leffler function), which satisfies the following expression 

 ( )
( )
( ) ( ) ( )1

1
0

0 0 .
1

k

c c c
k

t
V V V E t

k

θ
θ

ω

∞

=

> =
Γ +∑




  (16) 

such that the positivity of the solution cV  is given by 

 ( ) ( )10 0.c cV V E tθ> >
  

which contradicts ( )1 0cV t = . 
Similarly, suppose ( )1 0cR t =  which implies that ( ) 0S t > , ( ) 0cV t > ,  
( ) 0cI t > , ( ) 0c tφ > , ( ) 0pV t > , ( ) 0pI t > , ( ) 0pR t > , 0cpI > , 0cpH > , for 

all 10 t t≤ ≤ . We assume that there exists the following expression 

 ( ) ( ) ( ){ }2 1 10
min .

t
c c c c c ct t

Y p I Y Rθ ω φ µ θ
≤ ≤

 = + + + + +   

So that 

 ( ) ( )2 .t c cD R t R tθ>  (17) 

We can still determine a continuous function ( )2 tΦ  to ascertain the follow-
ing equation 

 ( ) ( ) ( )2 2 .t c cD R t R t tθ− = −Φ  (18) 

By Laplace transform the above inequality becomes 

 ( ) ( ) ( ) ( )1
2 20 ,c c cs R s s R R s sθ−− − = −Φ  

   

from which 

 ( ) ( ) ( )2 2
21

0 0
0 .

k k

c c k k
k k

R s R s
s s
θ θ∞ ∞

+ +
= =

= −Φ∑ ∑

    (19) 

Ignoring the non-positive term, the inverse Laplace transform gives the solu-
tion of Equation (17) (using Mittag-Leffler function), satisfies the following ex-
pression 

 ( ) ( )
( )
( ) ( ) ( )2

2
0

0 0 .
1

k

c c c
k

t
R t R R E t

k

θ
θ

∞

=

> =
Γ +∑





 (20) 

Hence the positivity of this other solution cR  is given by 
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 ( ) ( ) ( )20 0.c cR t R E tθ> >
  

and contradicts ( )1 0cR t = . Moreso, since the above have similar results, the 
same pattern will show that the positivity of the solutions S , cI , cφ , pV , pI , 

pR , cpI , and cpH  respectively are given by 

 ( ) ( )30 0,S S E tθ> >
  

 ( ) ( ) ( ) ( )4 50 0, 0 0,c c c cI I E t E tθ φ φ θ> > > > 
   

 ( ) ( ) ( ) ( ) ( ) ( )6 70 0, 0 0,p p p pV t V E t I t I E tθ θ> > > > 
   

 ( ) ( ) ( ) ( ) ( )8 90 0, 0 0,p p cp cpR t R E t I I E tθ θ> > > > 
   

 ( ) ( ) ( ) ( )10 110 0, 0 0.cp cp cp cpH H E t R R E tθ θ> > > > 
   

4.3. Existence and Uniqueness of Solution 

In this case we consider the shortened expression for our model 7 so as to establish 
the existence and uniqueness of solution 

 
( ) ( )( )

( )
0

0

, ,

0 ,

ABC m
tD G t t G t

G G

 =


=


 

where the vector ( ), , , , , , , , ,h c c c c p p p cp cpG S V I Q R V I R I H=  denotes the model 
compartments and ( )1 2 3 4 5 6 7 8 9 10, , , , , , , , ,=            denotes the continu-
ous vector function such that 

( )( ) ( )( ) ( )( )

( )( ) ( )( )( ) ( )( )
( )( ) ( )( ) ( ) ( )( )( )

( )( )

1

2

3

1 1 1

, 1 1

, 1 1 1

, 1 1 1

1

h h vp vc c c cp p p cp h

c c p p

c vc h h c c c cp c p p cp c

c c c cp h p c c c cp c

p p p cp h c

t S t I I I I S

R R

t V t S I I V I I V

t I t I I S V I I V

I I v

µ ω ω π ηρ π ηρ

θ θ

ω µ π χ ηρ π ηρ

π ηρ π χ ηρ

κ π ηρ µ σ γ ρ

 = Θ− + + + − + + − + 
+ +

 = − + − − + − − + 
   = − + + + − − +   
− − + + + + + +







( )( ) [ ]
( )( ) [ ] [ ] ( )
( )( ) ( )( )( ) ( )( )
( )( ) ( )( ) ( ) ( )( )( )

( )( )

4 1 1 1

5 1 1

6

7

,

,

, 1 1 1

, 1 1 1

1

c pd cp pd cp

c c c h c

c c c c c h c c

p vp h h p p p cp p c c cp p

p p p cp h c p p p cp p

c c c cp h

I I H

t Q t v I Q

t R t I Q R

t V t S I I V I I V

t I t I I S V I I V

I I

γ γ

γ ω µ σ

γ ρ γ ω µ θ

ω µ π χ ηρ π ηρ

π ηρ π χ ηρ

π κ ηρ µ

 + +
= − + + +

= + + + − +

 = − + − − + − − + 
   = − + + + − − +   

− − + + +









( )

( )( ) ( )
( )( ) ( )( ) ( )( )

( )
( )( ) ( )

2 2 2

8

9

1 2 2 2

10 2 1 2 2

,

, 1 1

,

p p cd cp cp

p p p h p p

cp p p p cp c c c c cp p

h cd pd cp

cp cp h pd cp

I I H

t R t I R

t I t I I I I I I

v I

t H t v I H

σ γ γ ρ ω

γ µ θ

π κ ηρ π κ ηρ

µ σ σ γ γ ρ

µ σ σ ω γ

 + + + + 

= − +

= − + + − +

− + + + + + +

= − + + + +





 (21) 

Definition 4.1. A Lipschitz condition for the second argument of a function 
( )f t  is defined as ( ) ( )1 2 1 2, ,f t y f t y L y y− ≤ − , where L is the positive 
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constant, and ( ) ( )1 2, , ,t y t y  are a set 2D∈ . 
To prove our result, we consider the following assumptions  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]

, , , , , , , , , , , ,

, , , , , , , 0,1
h h c c c c c c c c p p

p p p p c p cp c p cp

S t S t V t V t I t I t Q t Q t R t R t V t V t

I t I t R t R t I t I t H t H t z∈

    

   

 

be continuous function, such that 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 3 4 5

6 7 8 9 10

, , , , ,

, , , ,
h c c c c

p p p cp cp

S t z V t z I t z Q t z R t z

V t z I t z R t z I t z H t z

≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤
 

for non-negative constant 1 2 3 4 5 6 7 8 9 10, , , , , , , , , 0z z z z z z z z z z > . 
Theorem 4.1. The Lipschitz condition satisfy the model Equation (21) for 

10i∈ , if the above assumptions holds true and fullfils an 1ψ <  for 10i∈ . 
Proof. We prove that ( ), hz t S  fulfills the Lipschitz condition above for 
( ) ( ),h hS t S t , we get 

 

( ) ( )
( )( ) ( )( )

( )( )
( )( )

( )( ) ( )( )

1 1, ,

1 1

1

1

1 1

h h

h vp vc c c cp p p cp h

c c p p h h vp vc c c cp

p p cp h c c p p h

h vp vc c c cp p p cp h

c c p p h h

z t S z t S

I I I I S

R R S I I

I I S R R S

I I I I S

R R S S

µ ω ω π ηρ π ηρ

θ θ µ ω ω π ηρ

π ηρ θ θ

µ ω ω π ηρ π ηρ

θ θ

ψ

−

  = Θ− + + + − + + − + 

 + + − Θ− + + + − + 

+ − + + + 

 ≤ Θ− + + + − + + − + 

+ + −

≤







1 h hS S− 

 (22) 

where 

( )( ) ( )( )1 1 1h vp vc c c cp p p cp h c c

p p

I I I I S R

R

ψ µ ω ω π ηρ π ηρ θ

θ

 = Θ− + + + − + + − + + 
+

. 

Hence, 1z  satisfies the Lipschitz condition with Lipschitz constant 1ψ . Simi-
larly, the other kernels satisfy the Lipschitz condition as follows 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

10 10

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

,

c c c c

c c c c

c c c c

c c c c

p p p p

p p p p

p p p p

cp cp cp cp

cp

z t V z t V V V

z t I z t I I I

z t Q z t Q Q Q

z t R z t R R R

z t V z t V V V

z t I z t I I I

z t R z t R R R

z t I z t I I I

z t H z

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

− ≤ −

− ≤ −

− ≤ −

− ≤ −

− ≤ −

− ≤ −

− ≤ −

− ≤ −

−

 

 

 

 

 

 

 

 

( ) 10, cp cp cpt H H Hψ≤ − 

 (23) 
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Hence, all the kernels iz  for 10i∈  satisfies the Lipschitz properties with 
Lipschitz constant 1 1ψ <  for 10i∈ . 

Applying the Atangana-Baleanu fractional integral operator in Caputo sense on 
the model 7 and utilizing the initial conditions, we obtain the following Voltera 
integral equations 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( )

1
1 10

1
1 10

1
1 10

1
1 10

1

10 , , d ,

10 , , d ,

10 , , d ,

10 , , d ,

10 ,

t
h

t
c c c

t
c c c c

t
c c c c

c c

S t S t S t t S

V t V t V t t V

I t I t I t t I

Q t Q t Q t t Q

R t S t R t

ϑ

ϑ

ϑ

ϑ

ϑ ϑ
ϑ ϑ ϑ
ϑ ϑ
ϑ ϑ ϑ
ϑ ϑ
ϑ ϑ ϑ
ϑ ϑ
ϑ ϑ ϑ
ϑ ϑ
ϑ ϑ

−

−

−

−

−
= + + −

Γ

−
= + + −

Γ

−
= + + −

Γ

−
= + + −

Γ

−
= + +

Γ

∫

∫

∫

∫

     
 

     
 

     
 

     
 


  ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1
10

1
1 10

1
1 10

1
1 10

1
1 10

, d ,

10 , , d ,

10 , , d ,

10 , , d ,

10 , ,

t
c

t
p p p p

t
p p p p

t
p p p p

t
cp cp cp cp

t R

V t V t V t t V

I t I t I t t I

R t R t R t t R

I t I t I t t I

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ
ϑ ϑ
ϑ ϑ ϑ
ϑ ϑ
ϑ ϑ ϑ
ϑ ϑ
ϑ ϑ ϑ
ϑ ϑ
ϑ ϑ ϑ

−

−

−

−

−

−

−
= + + −

Γ

−
= + + −

Γ

−
= + + −

Γ

−
= + + −

Γ

∫

∫

∫

∫

∫

    

     
 

     
 

     
 

   
 

( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1
1 10

d ,

10 , , d ,
t

cp cp cp cpH t H t H t t Hϑϑ ϑ
ϑ ϑ ϑ

−−
= + + −

Γ ∫

 

     
 

(24) 

Theorem 4.2 The continuous function k , for 1,2, ,10k =   satisfies the 
Lipschitz condition for the second argument if and only if 

 
0 1 1 0 1 2 0 1 3

0 1 4

sup , sup , sup , 

sup , 0, 1, 2,3, 4.

t h h t c c t c c

t c c j

S S z V V z I I z

Q Q z z z

< ≤ < ≤ < ≤

< ≤

− ≤ − ≤ − ≤

− ≤ > =

  



 

Proof. Let [ ]( )1 0, :C T →   be the Banach space of all the continuous and 
differentiable functions from [ ]0,T →   so that using the fixed point theorem, 
we show that the function , 1, 2, ,10k k =   is Lipschitz continuous with Lip-
schitz constants. Let hS  be the second solution and using triangle inequality en-
dowed with Chebychev norm we have the following relationships 

 

( ) ( )
( )( ) ( )( )(

) ( )( )(
( )( ) )

1 1

1 1

1

1

h

h vp vc c p cp p p cp h

c c p p h vp vc c p cp

p p cp h c c p p

S S

I I I I S

R R I I

I I S R R

µ ω ω π ηρ π ηρ

θ θ µ ω ω π ηρ

π ηρ θ θ

−

 ≤ Θ− + + + − + + − + 

+ + − Θ− + + + − +

+ − + + +

 
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( )( ) ( )( )
( )( ) ( )( )

1

1 2 3 4

1 1

1 1  

h vp vc c p cp p p cp h h

h vp vc h h

h h

I I I I S S

z z z z S S

Z S S

µ ω ω π ηρ π ηρ

µ ω ω ηρ ηρ

≤ + + + − + + − + −

≤ + + + − + + − + −

= −

 

where ( )( ) ( )( )
1 1 2 3 41 1h vp vcZ z z z zµ ω ω ηρ ηρ= + + + − + + − + . 

Similarly, we applied same for ( )( )2 , ct V t  up to ( )( )10 , ct V t , having  
( )( )( ) ( )( )

2 1 2 3 41 1 1h cZ z z z zµ χ ηρ ηρ= + − − + − − +  

 ( )( )
3 3 4 1 1 11p p h czZ z vκ π ηρ µ σ γ ρ= − + + + + + +  

 4 1 1c hZ γ ω µ σ= + + +  

 5 h cZ µ θ= +  

 
( )( )( ) ( )( )

6 3 4 1 21 1 1h p z z zZ zµ χ ηρ ηρ = + − − + + − +   

 ( )( )
7 1 2 21c h pzZ zκ ηρ µ σ γ= − + + + +  

 8 h pZ µ θ= +  

 9 1 2 2 2h cd pd vZ µ σ σ γ γ ρ= + + + + + +  

 10 1 2 2h pdZ µ σ σ ω γ= + + + +  
Thus the argument in the above equations , 1, 2,3, 4z z =  satisfies the Lip-

schitz condition in its second argument with the Lipschitz constant 

 
( ) ( ) ( )

1

max1
k

T
L

ϑϑ
ϑ ϑ ϑ

−
 −

< +  Γ 
  

 □ 

We apply the Neumann series on the model 21 to test its convergence. Consider 
the folowing Neumann series, 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
1 1 1 10

10 , , d
t

hn h hn hnS t S t S t t Sϑϑ ϑ
ϑ ϑ ϑ

−
− −

−
= + + −

Γ ∫     
 

 (25) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
2 1 2 10

10 , , d
t

cn c cn cnV t V t V t t Vϑϑ ϑ
ϑ ϑ ϑ

−
− −

−
= + + −

Γ ∫     
 

 (26) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
3 1 3 10

10 , , d
t

cn c cn cnI t I t I t t Iϑϑ ϑ
ϑ ϑ ϑ

−
− −

−
= + + −

Γ ∫     
 

 (27) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
4 1 4 10

10 , , d
t

cn c cn cnQ t Q t Q t t Qϑϑ ϑ
ϑ ϑ ϑ

−
− −

−
= + + −

Γ ∫     
 

 (28) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
5 1 5 10

10 , , d
t

cn c cn hnR t R t R t t Sϑϑ ϑ
ϑ ϑ ϑ

−
− −

−
= + + −

Γ ∫     
 

 (29) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
6 1 6 10

10 , , d
t

pn p pn pnV t V t V t t Vϑϑ ϑ
ϑ ϑ ϑ

−
− −

−
= + + −

Γ ∫     
 

 (30) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
7 1 7 10

10 , , d
t

pn p pn pnI t I t I t t Iϑϑ ϑ
ϑ ϑ ϑ

−
− −

−
= + + −

Γ ∫     
 

 (31) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
8 1 7 10

10 , , d
t

pn p pn pnR t R t R t t Rϑϑ ϑ
ϑ ϑ ϑ

−
− −

−
= + + −

Γ ∫     
 

(32) 
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
9 1 9 10

10 , , d
t

cpn cp cp cpnI t I t S t t Sϑϑ ϑ
ϑ ϑ ϑ

−
− −

−
= + + −

Γ ∫     
 

 (33) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
10 1 10 10

10 , , d
t

cpn cp cp cpnH t H t H t t Hϑϑ ϑ
ϑ ϑ ϑ

−
− −

−
= + + −

Γ ∫     
 

(34) 

It follows that the Neumann series is convergent by considering 

( ) ( )

( )( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1

1 1 1

1
1 1 10

1 , ,

, , d

hn hn

hn hn

t
hn hn

S t S t

t S t t S t

t S Sϑ

ϑ

ϑ
ϑ ϑ

+

−

−
−

−

−
≤ −

− − −
Γ ∫

 


      


 (35) 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

1 10

1
d

t
hn hn hn hn

L L
S t S t t S t S tϑϑ ϑ

ϑ ϑ ϑ
−

− −

−
≤ − + − −

Γ ∫
   

 
 (36) 

( ) ( ) ( ) ( ) ( )
1

max
1

1
hn hn

T
L S t S t

ϑϑ
ϑ ϑ ϑ − ∞

 −
≤ + −  Γ 

 
 (37) 

Applying similar process yields 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

max
1 1

1
cn cn cn cn

T
V t V t L V t V t

ϑϑ
ϑ ϑ ϑ+ − ∞

 −
− ≤ + −  Γ 

 
 (38) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
3

max
1 1

1
cn cn cn cn

T
I t I t L I t I t

ϑϑ
ϑ ϑ ϑ+ − ∞

 −
− ≤ + −  Γ 

 
 (39) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
4

max
1 1

1
cn cn cn cn

T
Q t Q t L Q t Q t

ϑϑ
ϑ ϑ ϑ+ − ∞

 −
− ≤ + −  Γ 

 
 (40) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
5

max
1 1

1
cn cn cn cn

T
R t R t L R t R t

ϑϑ
ϑ ϑ ϑ+ − ∞

 −
− ≤ + −  Γ 

 
 (41) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
6

max
1 1

1
pn pn pn pn

T
V t V t L V t V t

ϑϑ
ϑ ϑ ϑ+ − ∞

 −
− ≤ + −  Γ 

 
 (42) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
7

max
1 1

1
pn pn pn pn

T
I t I t L I t I t

ϑϑ
ϑ ϑ ϑ+ − ∞

 −
− ≤ + −  Γ 

 
 (43) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
8

max
1 1

1
pn pn pn pn

T
R t R t L R t R t

ϑϑ
ϑ ϑ ϑ+ − ∞

 −
− ≤ + −  Γ 

 
 (44) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
9

max
1 1

1 |cpn cpn cpn cpn
T

I t I t L I t I t
ϑϑ

ϑ ϑ ϑ+ − ∞

 −
− ≤ + −  Γ 

 
 (45) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
10

max
1 1

1
cpn cpn cpn cpn

T
H t H t L H t H t

ϑϑ
ϑ ϑ ϑ+ − ∞

 −
− ≤ + −  Γ 

 
 (46) 

It follows that 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

max
1 1 0

1
n

n

hn hn h h
T

S t S t L S t S t
ϑϑ

ϑ ϑ ϑ+ ∞

 −
− ≤ + −  Γ 

 
 (47) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

2

max
1 1 0

1
n

n

cn cn c c
T

V t V t L V t V t
ϑϑ

ϑ ϑ ϑ+ ∞

 −
− ≤ + −  Γ 

 
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

3

max
1 1 0

1
n

n

cn cn c c
T

I t I t L I t I t
ϑϑ

ϑ ϑ ϑ+ ∞

 −
− ≤ + −  Γ 

 
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

4

max
1 1 0

1
n

n

cn cn c c
T

Q t Q t L Q t Q t
ϑϑ

ϑ ϑ ϑ+ ∞

 −
− ≤ + −  Γ 

 
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

5

max
1 1 0

1
n

n

cn cn c c
T

R t R t L R t R t
ϑϑ

ϑ ϑ ϑ+ ∞

 −
− ≤ + −  Γ 

 
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

6

max
1 1 0

1
n

n

pn pn p p
T

V t V t L V t V t
ϑϑ

ϑ ϑ ϑ+ ∞

 −
− ≤ + −  Γ 

 
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

7

max
1 1 0

1
n

n

pn pn p p
T

I t I t L I t I t
ϑϑ

ϑ ϑ ϑ+ ∞

 −
− ≤ + −  Γ 

 
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

8

max
1 1 0

1
n

n

pn pn p p
T

R t R t L R t R t
ϑϑ

ϑ ϑ ϑ+ ∞

 −
− ≤ + −  Γ 

 
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

9

max
1 1 0

1
n

n

cpn cpn cp cp
T

I t I t L I t I t
ϑϑ

ϑ ϑ ϑ+ ∞

 −
− ≤ + −  Γ 

 
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

10

max
1 1 0

1
n

n

cpn cpn cp cp
T

H t H t L H t H t
ϑϑ

ϑ ϑ ϑ+ ∞

 −
− ≤ + −  Γ 

 
 

Since 

 
( ) ( ) ( )

1

max1
k

T
L

ϑϑ
ϑ ϑ ϑ

−
 −

< +  Γ 
  

 (48) 

Evidently, the right hand sides of inequalities in (48) tends to zero as n →∞  
uniformly on [ ]0,T . By taking limits in (47), we see that  

, , , , , , , , ,h c c c c p p p cp cpS V I Q R V I R I H  satisfies the original integral, thereby proving 
the existence and the continuous functions. 

4.4. Disease Free Equilibrium and Basic Reproduction Number 

The model (7) has a DFE, obtained by setting the right hand sides of the equations 
in model (7) to zero, given by 

 ( )* * * * *
0 , , , , , , , , ,h c c c c p p p cp cpS V I Q R V I R I H=  (49) 

 
**

, ,0,0,0, ,0,0,0,0vp hvc h

h vp vc h h

SS ωω
µ ω ω µ µ

 Θ
=   + + 

 (50) 

The local stability of the disease free equilibrium, E0 can be established using 
the next generation operator method [16] on system (7). Using the notation in 
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lemma (3.2.1). 
We first obtain   given as 

 

( )( ) ( ) ( )( )( )

( )( ) ( ) ( )( )( )
( )( ) ( )( )

0

0

0

0

0

1 1 1

0

1 1 1

1 1

0

abc
t c c p cp h p c c p cp c

abc
t c

abc
t p p p cp h c p p p cp p

abc
t cp p p p cp c c c p cp p

abc
t cp

D I I I S V I I V

D Q

D I I I S V I I V

D I I I I I I I

D H

ϑ

ϑ

ϑ

ϑ

ϑ

π ηρ π χ ηρ

π ηρ π χ ηρ

π κ ηρ π κ ηρ

   = − + + + − − +   
=

   = − + + + − − +   

= − + + − +

=

 

and   given as 

 

[ ]
[ ]

( )
( )

( )

0 1 1 1

0 1 1 1

0 2 2 2

0 1 2 2 2

0 2 1 2 2

abc
t c h c c pd cp pd cp

abc
t c c c h c

abc
t p h p p cd cp cp

abc
t cp h cd pd cp

abc
t cp cp h pd cp

D I v I I H

D Q v I Q

D I I I H

D I v I

D H v I H

ϑ

ϑ

ϑ

ϑ

ϑ

µ σ γ ρ γ γ

γ ω µ σ

µ σ γ γ ρ ω

µ σ σ γ γ ρ

µ σ σ ω γ

= + + + + + +

= − + + +

 = + + + + + 

= + + + + + +

= − + + + +

 

the matrix F and V are respectively given as 

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( ) ( )( ) ( ) ( )

* * * * * *

* * * * * *

* * * * * * *

1 1 1 0 0 1 1 1 0

0 0 0 0 0

0 0 1 1 1 1 1 1 0

1 1 0 1 1 1 1

h p c c c c c h p c c c

p h p p c p p h c p p p

p p p cp c c p p p c c c p cp p p c c c p

S V V S V V

F S V V S V V

I I I I I I I I

ηρ π π ηρ χ π ηρ π χ ηρ

π ηρ π ηρ χ π ηρ π χ ηρ

κ π ηρ κ π ηρ κ π ηρ κ π ηρ κ π ηρ κ π ηρ

− + + − − − + + − −

= − + + − − − + + − −

− + + − − + − + − + − * 0

0 0 0 0 0

 
 
 
 
 
 
 
 
 

(51) 

( )

1 1 1 1 1

1 2

2 2 2

1 2 2 2

2 1 2 2

0
0 0 0

0 0
0 0 0 0

0 0 0

h c c h pd pd

h p

h p cd

h cd pd

h pd

v
v

V
v

v

µ σ γ ρ γ ω µ σ γ γ
µ σ γ

µ γ σ γ ρ ω
µ σ σ γ γ ρ

µ σ σ ω γ

+ + + + + + + 
 + + 
 + + +=
 

+ + + + + + 
 − + + + + 

 (52) 

 
( )( ) ( )( )

( ) ( ) ( )( )

* * *

1

1 1 1

* * *

1 2 2 2

0
0

1 1 1

1 1 1

h p c c c c

h c

p h p p c p

h cd pd

S V V
FV

v

S V V

v

ηρ π π ηρ χ

µ σ γ ρ

ηρ π π ηρ χ

µ σ σ γ γ ρ

−

 
 
 
 − + + − −
 =  + + + +
 

− + + − − 
 

+ + + + + +  

 (53) 

the basic reproduction number of the model (7), is given by { }0 01 02max ,=   , 
where 01  and 02  are respective reproduction numbers given by 

 

( )( ) ( )( )

( )( ) ( )( )

* * *

01
1 1 1

* * *

02
1 2 2 2

1 1 1
,

1 1 1
.

c h p c c c

h c

c h p c c c

h cd pd

S V V

v

S V V

v

π ηρ π ηρ χ

µ σ γ ρ

π ηρ π ηρ χ

µ σ σ γ γ ρ

− + + − −
=

+ + + +

− + + − −
=

+ + + + + +




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4.5. Generalized Ulam-Hyers-Rassias Stability 

In this section, we establish the generalized Ulam-Hyers-Rassias (UHR) stability 
for the fractional model 7. This type of stability assesses whether approximate so-
lutions stay close to true solutions under certain conditions. We state the required 
definition. 

Definition 4.2. The model 7 has Ulam-Hyers stability if there exist constant 
0iϑ > , 10i∈ , satisfying for every 0i > , 10i∈ . if 

 ( ) ( )0 1 1,abc
t hD S t Z t sϑ − ≤   (54) 

 ( ) ( )0 2 2,abc
t c cD V t Z t Vϑ − ≤   (55) 

 ( ) ( )0 3 3,abc
t c cD I t Z t Iϑ − ≤   (56) 

 ( ) ( )0 4 4,abc
t c cD Q t Z t Qϑ − ≤   (57) 

 ( ) ( )0 5 5,abc
t c cD R t Z t Rϑ − ≤   (58) 

 ( ) ( )0 6 6,abc
t p pD V t Z t Vϑ − ≤   (59) 

 ( ) ( )0 7 7,abc
t p pD I t Z t Iϑ − ≤   (60) 

 ( ) ( )0 8 8,abc
t p pD R t Z t Rϑ − ≤   (61) 

 ( ) ( )0 9 9,abc
t cp cpD I t Z t Iϑ − ≤   (62) 

 ( ) ( )0 10 10,abc
t cp cpD H t Z t Hϑ − ≤   (63) 

and there exist a solution of the COVID-19 and Streptococcus pneumoniae Model 
7 given by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , c c c c p p p cp cpS t V t I t Q t R t V t I t R t I t H t         (64) 

that satisfying the given model such that 

 

1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8

9 9 10 10

, , , ,

, , , ,

,

h h c c c c c c

c c p p p p p p

cp cp cp cp

S S V V I I Q Q

R R V V I I R R

I I H H

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

ϑ ϑ

− ≤ − ≤ − ≤ − ≤

− ≤ − ≤ − ≤ − ≤

− ≤ − ≤

  

   

 

   

   

 

 

Remark 1. Consider that the function hS  is a solution of the first inequality 
in 4.2 above, if a continuous function 1h  exist so that 

 ( )1 1h t ≤   

 ( ) ( ) ( )0 1 1,abc
t h hD S t Z t S h tϑ = +  (65) 

Similarly, we apply this to the other inequalities by finding ih  for 10i∈  

 ( )2 2h t ≤   (66) 

 ( ) ( ) ( )0 2 2,abc
t c cD V t Z t V h tϑ = +  (67) 

 ( )3 3h t ≤   (68) 
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 ( ) ( ) ( )0 3 3,abc
t c cD I t Z t I h tϑ = +  (69) 

 ( )4 4h t ≤   (70) 

 ( ) ( ) ( )0 4 4,abc
t c cD Q t Z t Q h tϑ = +  (71) 

 ( )5 5h t ≤   (72) 

 ( ) ( ) ( )0 5 5,abc
t c cD R t Z t R h tϑ = +  (73) 

 ( )6 6h t ≤   (74) 

 ( ) ( ) ( )0 6 6,abc
t p pD V t Z t V h tϑ = +  (75) 

 ( )7 7h t ≤   (76) 

 ( ) ( ) ( )0 7 7,abc
t p pD I t Z t I h tϑ = +  (77) 

 ( )8 8h t ≤   (78) 

 ( ) ( ) ( )0 8 8,abc
t p pD R t Z t R h tϑ = +  (79) 

 ( )9 9h t ≤   (80) 

 ( ) ( ) ( )0 9 9,abc
t cp cpD I t Z t I h tϑ = +  (81) 

 ( )10 10h t ≤   (82) 

 ( ) ( ) ( )0 10 10,abc
t cp cpD H t Z t H h tϑ = +  (83) 

Let us assume that the model 7 is Ulam-Hyers Stable. 
Proof. To prove the above assumption, let 1 0>  and the function hS  be ar-

bitrary so that 

 ( ) ( )1 2,
0 1 1,abc

t h hD S t Z t Sϑ ϑ − ≤   (84) 

Referencing remark 1, we have a function 1h  with ( )1 1h t <   satisfies 

 ( ) ( ) ( )1 2,
0 1 1,abc

t h hD S t Z t S h tϑ ϑ = +  

Consequently, 

 

( ) ( ) ( ) ( ) ( ) ( )( )

( )
( ) ( )( )

( ) ( ) ( ) ( )
( ) ( )

1

2
12

11 2 1 2
10

1 1 1

2 1 2
1

1

1
1 2 111 2

1 10
1 1 1

10 , d

1 1
,

1
d

t
h h h

h

t

S t S t Z t S t

Z t S t

t
t t h t h s

ϑ

ϑ
ϑϑ

ϑϑ ϑϑ
ϑ ϑ ϑ

ϑ ϑ ϑ
ϑ

ϑ ϑϑϑ
ϑ ϑ ϑ

−

−
−−

−
= + + −

Γ

− + −
+

−
+ − +

Γ

∫

∫

 
 



 
 

 

Let hS  be the solution of the given model, then 

 

( ) ( ) ( ) ( ) ( ) ( )( )

( )
( ) ( )( )

12

2

111 2 1 2
10

1 1 1

1
2 1

1
1

10 , d

1
,

t
h h h

h

S t S t t Z t S t

t
Z t S t

ϑϑ

ϑ

ϑϑ ϑϑ
ϑ ϑ ϑ

ϑ ϑ
ϑ

−−

−

−
= + + −

Γ

−
+

∫  
 


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Hence, 

 

( ) ( ) ( ) ( ) ( ) ( )( )

( )
( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( )

( )
( ) ( )

( ) ( )
( )
( )

12

2

12

2

111 2 1 2
10

1 1 1

1
2 1 1 2

1 1
1 1

111 2
10

1 1

1
2 1

1
1

2 11 2 1 2 2
1

1 1 1 2 1

1 , d

1 1, ,

, d

1

11

t
h h h

h h

t
h

h h

S t S t t t Z t S t

t
Z t S t Z t S t

t t h t S t

t
h t

S S

ϑϑ

ϑ

ϑϑ

ϑ

ϑϑ ϑϑ
ϑ ϑ ϑ

ϑ ϑ ϑϑ
ϑ ϑ

ϑϑ
ϑ ϑ

ϑ ϑ
ϑ

ϑ ϑϑϑ ϑϑ ϑ
ψ

ϑ ϑ ϑ ϑ ϑ

−−

−

−−

−

−
− ≤ + −

Γ

− −
+ − +

+ −
Γ

−
+

 −− Γ
≤ + + − 

Γ +  

∫

∫







 
 

 

 




  

( ) ( )
( )
( )

2 11 2 1 2 2
1

1 1 1 2 1

11 ϑ ϑϑϑ ϑϑ ϑ
ϑ ϑ ϑ ϑ ϑ

 −− Γ
+ + + 

Γ +  


  
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Then 

 1 1hS h S ϑ− − ≤   (85) 

Therefore, 
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 (86) 

Now applying similar approach to the other functions, we obtain 

 2 2c cV V ϑ− ≤   (87) 

 3 3c cI I ϑ− ≤   (88) 

 4 4c cQ Q ϑ− ≤   (89) 

 5 5c cR R ϑ− ≤   (90) 

 6 6p pV V ϑ− ≤   (91) 

 7 7p pI I ϑ− ≤   (92) 

 8 8p pR R ϑ− ≤   (93) 

 9 9cp cpI I ϑ− ≤   (94) 

 10 10cp cpH H ϑ− ≤   (95) 

Hence, we conclude that the function model 7 is Ulam-Hyers stable 
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4.6. Numerical Scheme: Fractional Adams-Bashforth-Moulton 
Method 

We adopted the well-known fractional Predictor-Corrector method proposed by 
Diethelm et al in solving the numerical scheme of the fractional COVID and pneu-
monia model. The method combines the Predict-Evaluate-Correctional Euler or 
one-step Adams-Bashforth method for prediction with the fractional one-step 
Adams-Moulton method for correction, collectively known as the fractional Ad-
ams-Bashforth-Moulton method (ABMM). We consider the initial value problem 
endowed with the Caputo fractional derivative: 

 
( )( ) [ ]

( ) 0

, , 0 1, 0, ,

0 0.

C
tD t t t Tϕ ϕ Ψ = Φ Ψ < ≤ ∈ ∈
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This problem is equivalent to the following Volterra integral equation: 
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To approximate the integral, we divide the time T into N equal parts with a 
step-size of h T N= . The points in the grid are defined by the nodes jt jh=  for 

0,1,2, , 1j k= + . We then replace the integral part of the equation with: 
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The fractional Adams-Bashforth predictor method is obtained by substituting 
the above approximation into the equation: 
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where ( ) ( )( ), 1 1j k
h k j k j
ϕ

ϕ ϕι
ϕ+ = − + − −  are the weights for the predictor values.  

The predictor-corrector method’s computational complexity, is ( )2h− , com-
pared to the ( )1h−  complexity of integer-order initial value problems. This in-
creased complexity arises from the non-local nature of fractional-order deriva-
tives. However, advanced techniques, such as the nested memory concept, offer 
improved computational efficiency with a complexity of ( )( )1 1logh h− −  while 
maintaining accuracy. 

4.7. Sensitivity Analysis 

Sensitivity analysis is carried out in this section to analyse the influence of the 
different parameters involved in the reproduction numbers of model 7. We used 
PRCC techniques separately for the reproduction number to show the role of the 
parameters in the reproduction number. It can be observed from Figure 2, that 
the parameters that will have a high impact on 01R  are , cβ Θ , and pχ . These 
parameters are in direct proportion with 01R , as any factor that increases them 
also raises the value of 01R . Hence efforts target on these parameters should be 
ones that reduce their values. On the other hand , vc vpω ω  and 1ν  reduces  

 

 
Figure 2. Sensitivity with respect to 01R . 
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the value of 01R  when we increase them. The other parameters associated with 
this reproduction number have minimal effect on it. As shown in Figure 3, using 

02R  as the response function, ,Θ  and vcω  are in direct variation with 02R , 
while , vc pω χ  and 2σ  play a reverse role. 

 

 
Figure 3. Sensitivity with respect to 02R . 

Simulations 
Applying the numerical scheme given above, we now present the plots. Figures 

4(a)-(d), shows the plots of the infectious classes over time at different fractional  
 

 
Figure 4. Comparison of the infectious classes at different orders. 
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orders of 0.95, 0.90, 0.85, 0.80. It shows that as we increase the order at DFE, we 
have the dynamics of the infectious classes of the model approaching zero faster, 
suggesting that at if we want to achieve a desirable result of reducing the disease 
burden, we should analyze these models at the best possible high order. 

The plots in Figure 5(a) & Figure 5(b) and Figure 6(a)-6(b) below confirm the 
convergence of the disease classes to zero. This result confirms with what is ex-
pected at DFE, when the reproduction number is less than unity and from the 
definition of the reproduction number, the disease will eventually die out. The 
figures also confirmed the fact that the differences observed when the simulations 
are executed through a fractional derivative are a result of the memory effect 
which is absent in the classical integer order operator. The memory effect which 
considers past records and events of the diseases will play a great influence on the 
dynamics and accurate future prediction of the disease for effective control. In 
other words, this establishes that the result obtained through the AB derivative is 
more accurate than those obtained from integer order operator. 

 

 
Figure 5. 3-dimensional plot of the infectious classes under different initial conditions. 
 

 
Figure 6. Convergence of the infectious classes. 

5. Conclusion 

In this study, we presented and investigated the transmission dynamics of 
COVID-19 and Streptococcus pneumoniae co-infection using Atangana-Baleanu 
fractional derivative operator to epidemiologically understand the two diseases 
while reducing their spread. The model was established to be mathematically and 
biologically well-posed by showing that all solutions to the model are positive and 

https://doi.org/10.4236/oalib.1112569


C. Z. Opara et al. 
 

 

DOI: 10.4236/oalib.1112569 26 Open Access Library Journal 
 

remain bounded within a region. The existence and uniqueness analysis were es-
tablished using Banach fixed point theorem to ensure validity of the model. Fur-
thermore, we examine the stability of the model by applying the criteria proposed 
by Ulam-Hyers-Rassias Stability. The numerical scheme of the fractional model 
was solved using the fractional Predictor-Corrector method which combines the 
Predict-Evaluate-Correctional-Euler or one-step Adams-Bashforth method for 
prediction with the fractional one-step Adams-Moulton method. 

The impact of the fractional derivative on the proposed model was presented 
using simulations. The simulation results as presented in the figures clearly reveal 
that the dynamics of both diseases in each epidemiological category over time 
were significantly impacted by the use of fractional derivatives. The variations ob-
served in the simulations with fractional derivatives are attributed to the memory 
effect, which is absent when using the traditional integer-order operator. The ex-
istence of this memory effect, which accounts for past events, has a profound in-
fluence on the future dynamics of diseases, making them more amenable to con-
trol. Consequently, this highlights the superiority of the results obtained through 
the use of the AB derivative compared to those achieved with the integer-order 
operator. 

6. Recommendations 

From these work findings, we recommend the following: 
1) Effective vaccination against COVID-19, and Streptococcus pneumoniae, 

and administering of anti-bacteria treatment will decrease the basic reproductive 
number of the co-infection to barest minimum. 

2) Streptococcus pneumoniae clinical diagnosis should be made compulsory for 
every COVID-19 patient for early detection and treatment for co-infected indi-
vidual to minimize the severity and mortality rate of the co-infection 

Contribution to Knowledge 

The study formulated an in-dept fractional mathematical model for the co-infec-
tion of COVID-19 and Streptococcus pneumoniae with saturated incidence force 
of infection, and integrated the isolation, and hospitalized compartments. The 
fractional order model integrated memory effect, and hence provided accurate 
predictions for the control of the diseases. 
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